Servo control, which is also referred to as "motion control" or "robotics" is used in industrial processes to move a specific load in a controlled fashion. These systems can use either pneumatic, hydraulic, or electromechanical actuation technology. The choice of the actuator type (i.e. the device that provides the energy to move the load) is based on power, speed, precision, and cost requirements. Electromechanical systems are typically used in high precision, low to medium power, and high-speed applications. These systems are flexible, efficient, and cost-effective. Motors are the actuators used in electromechanical systems. Through the interaction of electromagnetic fields, they generate power. These motors provide either rotary or linear motion. Here is a graphical representation of a typical servo system:
This type of system is a feedback system, which is used to control position, velocity, and/or acceleration. The controller contains the algorithms to close the desired loop (typically position or velocity) and also handle machine interfacing with inputs/outputs, terminals, etc. The drive or amplifier closes the inner loop(s) (typically velocity or current) and represents the electrical power converter that drives the motor according to the controller reference signals. The motor can be of the brushed or brushless type, rotary or linear. The motor is the actual electromagnetic actuator, which generates the forces required to move the load. Feedback elements such as tachometers, lvdts, encoders and resolvers, are mounted on the motor and/or load in order to close the various servo loops.
Company designs and manufacturers servo drives and amplifiers for use in servo systems. Servo drives and amplifiers are used extensively in motion control systems where precise control of position and/or velocity is required. The drive/amplifier simply translates the low-energy reference signals from the controller into high-energy signals to provide motor voltage and current. In some cases the use of a digital drive replaces the controller/drive or controller/amplifier control system. The command signals represent either a motor torque, velocity or position and can be either analog or digital in nature. Analog +/-10 VDC command is still the most common reference signal but it is quickly giving way to digital network commands.